SEVEN GERMACRANOLIDES AND FOUR EUDESMANOLIDES FROM TITHONIA ROTUNDIFOLIA*

FERDINAND BOHLMANN,† JÜRGEN ZIESCHE†, HAROLD ROBINSON‡ and ROBERT M. KING‡

† Institute for Organic Chemistry, Technical University of Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, West Germany; †Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 8 May 1980)

Key Word Index--Tithonia rotundifolia; Compositae; sesquiterpene lactones; germacranolides; eudesmanolides.

Abstract—The aerial parts of Tithonia rotundifolia afforded, in addition to two known sesquiterpene lactones, eleven new ones, seven germacranolides and four eudesmanolides. The structures were determined by 'H NMR spectroscopy.

INTRODUCTION

Several species from the genus Tithonia (tribe Heliantheae, subtribe Helianthinae) have already been investigated chemically. Most of them afforded germacranolides with a 3,10-oxygen bridge [1-7] and widespread acetylenes [8]. T. rotundifolia (Mill.) Blake also has been investigated and the presence of tagitinin D is reported [1, 3]. An investigation of material from Brazil afforded, in addition to 8β -angeloyloxyreynosin (8)[9] and leptocarpin (14)[10], seven new germacranolides (1-7) and four eudesmanolides (9, 10, 12 and 13). Though these lactones are different from those reported before from this genus, they are related to those typical for the subtribe.

RESULTS AND DISCUSSION

The Et₂O-petrol extract of T. rotundifolia afforded germacrene D, caryophyllene, phytol and a complex mixture of sesquiterpene lactones, which could be

^{*}Part 305 in the series "Naturally Occurring Terpene Derivatives". For Part 304 see: Bohlmann, F., Gupta, R. K., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 331.

Table 1. ¹H NMR spectral data of compounds 1-7 (270 MHz, TMS as internal standard, CDCl₃)

	-	2	3	4	5	9	7
1-H	2.77 dd	2.77 dd	2.90 dd	2.84 dd	2.90 dd	5.01 dd	5.26 br.d
2β-H	2.14 dddd	2.16 dddd	2.15 dddd	2.23 dddd	2.25 dddd	4.77 dddd	4.85 ddd
32-H	2.45 ddd	2.42 ddd	2.45 ddd	2.49 ddd 2 33 ddd	2.50 ddd 2 33 ddd	2.74 dd 2.13 dd	2.75 dd 2.18 dd
S-H	5.37 br.d	5.35 br.d	5.38 br.d	5.41 br. d	5.41 br.d	5.01 br.d)	, ,
Н-9	5.14 dd	5.13 dd	5.13 dd	5.14 dd	5.12 dd	5.11 dd \{	5.06 m*
7-H 8-H	2.94 dddd 5.76 br.d	2.95 dddd 5.81 hr.d	2.94 dddd 5.77 br.d	2.96 dddd 5.74 br.d	2.96 m 5.71 br.d	2.97 <i>dddd</i> 5.82 <i>br.d</i>	2.98 dddd 5.82 br.d
92-Н 9β-Н 13-Н	1.33 br. d 2.87 dd 6.31 d 5.58 d	2.83 dd 6.31 d 5.51 d	1.17 br. d 3.22 dd 6.32 d 5.59 d	1.14 br. d 3.26 dd 6.32 d 5.57 d	1,22 br. d 3,21 dd 6,32 d 5 50 d	2.36 br. dd 2.89 dd 6.33 d 5.62 d	2.22 br. d 3.28 dd 6.34 d 5.52 d
14-H } 14'-H } 15-H	1.16 s	1.24 s 1.92 br. d	3.78 dd 3.46 dd 1.85 d	3.87 br. d 3.87 br. d 1.89 d	$ \begin{cases} 4.00 d \\ 4.20 br. d \\ 1.90 d \end{cases} $	1.55 br.s 1.79 d	4.82 <i>d</i> 4.08 <i>d</i> 1.74 br. s
OCOR	6.15 qq 2.00 dq 1.88 dq	3.05 q 1.25 d 1.54 s	6.14 4q 1.99 dq 1.90 dq	6.22 qq 2.06 dq 1.82 dq	3.05 <i>q</i> 1.28 <i>d</i> 1.46 <i>s</i>	6.13 qq 1.99 dq 1.85 dq	6.17 qq 2.01 dq 1.82 dq
OAc			÷	1.96 s	2.12 ×		1.96 s

* in C₆D_e: 4.52 (hr. d. 5-H), 4.99 (dd, 6-H).

 $J = (H2)(1-5; 1, 2\pi = 25; 1, 2\beta = 11; 2x, 2\beta = 14; 2x, 3\pi = 5; 2x, 3\beta = 25; 2\beta, 3\pi = 12; 2\beta, 3\beta = 2; 3\beta, 3\beta = 13; 5, 6 = 11; 5, 15 = 1.3; 6, 7 = 9; 7, 8 \sim 1; 7, 13 = 3; 5, 7, 13' = 3; 8, 9 \sim 1.5; 8, 9\beta = 6; 9x, 9\beta = 15; (3-5; 14, 14' = 11.5; 9x, 14' \cdot \cdot H = 8; 14', OH = 8; 14', OH = 8; 16, 7; 12 = 10; 2, 3\pi = 5; 3x, 3\pi = 11; 5; 6 = 10; 5, 15 = 1.5; 6, 7 = 9; 7, 13 = 3.5; 7, 13' = 3; 7, 8 \sim 1; 8, 9\pi = 5; 9x, 9\pi = 14.5; (7 + 14' + 14' = 125); OAng; 3', 4' = 7; 3', 5' = 4', 5' \sim 1.5; Epoxyang, 3', 4' = 5.$

separated by repeated TLC, in part with silver nitrate coated plates only. Careful ¹H NMR investigations, especially spin decoupling, led to the structures 1-10 and 12-14, 8 [9] and 14 [10] as described previously. The ¹H NMR data of 1-5 are very similar (Table 1). The presence of a 6.12-trans-lactone was indicated by the broadened doublet around δ 5.4 ppm ($J = 10 \,\mathrm{Hz}$) and a double doublet at about 5.13 (J = 10, 9 Hz), while the 8β orientation of the ester residues followed from the couplings of 8-H ($J_{7.8} \sim 1$ Hz). The 1,10-epoxide caused a typical double doublet at 1-H between 2.77 and 2.90 ppm (J = 2 Hz), depending on the substitution at C-14. The nature of the ester parts easily could be deduced from the ¹H NMR data. Also the substitution at C-14 clearly followed from the corresponding doublets in the spectra of 3-5. The hydroxy group in 3 caused an additional splitting of these signals. Acetylation afforded 4. The compound without substitution at C-8 and C-14 we have named tithifolin.

The ¹H NMR data of 6 are very similar to those of eupaserrin [11], which differs in the ester part only. The introduction of the 14-acetoxy group (7) led again to the appearance of two doublets for 14-H (Table 1), while the other signals were very similar to those of 6, indicating identical stereochemistry, 6 and 7 are derivatives of eupatolide. The ¹H NMR data of 9, 10 and the acetate 11, obtained by acetylation of 9, as well as those of 12 and 13 (Table 2) clearly showed that *trans*-eudesman-6,12-olides are present. In the spectra of 9-11 a typical triplet at 4.4 ppm (J = 10 Hz) was visible, while those of 12 and 13 displayed a broadened doublet at 5.12, due to the

homoallylic coupling with 3- and 15-H. The 8β -orientation of the ester groups could be deduced again from the observed couplings, which were the same as those in 8[9] and similar compounds. Also the equatorial orientation of the 1-hydroxy group followed from the observed couplings (J = 11, 5 Hz), while the nature of the ester groups and the position of the double bond could be assigned by the typical signals (Table 2). While 9 and 10 are balchanin derivatives, 12 and 13 are substituted arbusculins B.

If we look at the structures isolated from this species it is probable that 1 is the precursor, of course, of 2-5, but also of 8-10, 12 and 13. 14 is the only lactone, which is closely related to the lactones isolated before from *Tithonia* species. By a lack of 3-hydroxyl the epoxide ring could be opened to form the typical 3, 10-oxygen bridge. Lactones related to 6 are reported from *Helianthus* [12, 13], which is placed in the same subtribe, as well as from *Tetragonotheca*, which contains melampolides [14]. Surely further species should be studied to see whether the lactones isolated now are more widespread or not.

EXPERIMENTAL

¹H NMR: 270 MHz, TMS as int. standard, MS: 70 eV, direct inlet; CI, isobutane; optical rotation: CHCl₃. The air-dried aerial parts collected in north eastern Brazil (voucher RMK 7996) were extracted with Et₂O-petrol at room temp. and the resulting extract was separated by column chromatography (SiO₂, act. Grade II). With petrol 10 mg caryophyllene and 2 mg germacrene D were eluted and with Et₂O-petrol (1:3), 15 mg phytol. The

Table 2.	¹ H NMR s	pectral data	of compound:	s 9–13 (27	70 MHz, TM	S as internal	standard,	CDCl ₃)

	9	10	11	12	13
1-H	3.68 br. dd	3.70 br. dd	4.90 dd	3.56 br. dd	3.57 br. dd
2-H	2.45 m	2.45 m {	2.5 m	1.65 m	1.65 m
		(2.3 m		
3α-H	5 27 1-)	527 to -)	5 27 h	2.16 m	2.15 m
3 <i>β-</i> Η }	$5.37 \ br. \ s$	5.37 br. s	5.37 br. s	2.25 m	2.25 m
5-H	2.3 m	2.3 m	2.3 m		_
6-H	4.42 dd	4.45 dd	4.40 dd	5.12 br. d	5.11 br. d
7- H	2.83 dddd	2.82 m	2.81 dddd	2.95 dddd	2.95 dddd
8-H	5.83 dd	5.93 m	5.78 dd	5.85 dd	5.93 dd
9α-Η	1.58 dd	1.63 dd	1.59 dd	1.64 dd	1.62 dd
9β-Н	2.38 dd	2.32 dd	2.14 dd	2.42 dd	2.34 dd
13-H	6.17 d	6.16 d	6.17 d	6.25 d	6.24 d
13'-H	5.47 d	5.45 d	5.45 d	5.55 d	5.52 d
14-H	1.08 s	1.11 s	1.14 s	1.25 s	1.28 s
15-H	1.89br,s	1.89 br. s	1.90 <i>br. s</i>	1.90br.s	1.89 br. s
OCOR	6.11 <i>qq</i>	3.04 q	6.12 qq	6.10 qq	3.04 q
	1.99 dq	1.30 d	2.00 dq	1.99 dq	1.29 d
	1.85 dq	1.54 s	1.85 <i>dq</i>	1.86 dq	1.55 s
OAc		_	2.06 s		

 $J(Hz): 9-11: 1, 2\alpha = 6.5; 1, 2\beta = 9; 5, 6 = 6, 7 = 11; 7, 8 \sim 3; 7, 13 = 3.5; 7, 13' = 3; 8, 9\alpha = 3.5; 8, 9\beta = 2;$ 12-13: 1, $2\alpha = 5; 1, 2\beta = 11; 6, 7 = 11; 7, 8 = 3; 7, 13 = 3.5; 7, 13' = 3; 8, 9\beta = 2.$

polar fractions (Et₂O and Et₂O-MeOH, 10:1) were further separated by TLC (SiO₂, GF 354). The less polar part on repeated TLC (CHCl₃-MeOH, 100:1) afforded 2 mg 1, 1 mg 9, 1 mg 12 and 4 mg 14, while the more polar fractions yielded on repeated TLC (CHCl₃-MeOH, 30:1) 2 mg 2, 5 mg 3, 8 mg 4, 2 mg 5, 3 mg 6, 4 mg 7, 2 mg 8, 0.5 mg 10 and 0.5 mg 13, 10 and 13 could be separated by AgNO₃-coated SiO₂ only.

8β-Angeloyloxytithifolin (1). Colourless gum, IR $v_{\text{max}}^{\text{CCL}}$ cm⁻¹: 1780 (γ-lactone), 1725 (C=CCO₂R), MS $m_i e$ (rel. int.): 346.178 (M⁺, 0.3) (C₂₀H₂₆O₅), 246 (M + RCO₂H. 9), 83 (C₄H₇CO⁻¹, 100), 55 (83 - CO, 83).

$$[\alpha]_{24}^{2} = \frac{589}{+35.5} \frac{578}{+38.2} \frac{546}{+45.5} \frac{436 \text{ nm}}{+81.8} - (c = 0.11).$$

8β-[2,3-Epoxy-2-methylbutyryloxy]-tithifolin (2). Colourless gum, IR $v_{\rm max}^{\rm CCl_1}$ cm $^{-1}$: 1780 (γ-lactone), 1740 (CO₂R), MS m/e (rel. int.): 362.173 (C₂₀H₂₆O₆, 3). 246 (M – RCO₂H, 28), 57 (100).

$$[\alpha]_{24}^{2} = \frac{589}{+8.0} \frac{578}{+15.0} \frac{546}{+18.0} \frac{436 \text{ nm}}{+28.0} (c = 0.1).$$

8 β -Angeloyloxy-14-hydroxytithifolin (3). Colourless gum. IR $v_{\text{max}}^{\text{CCI}}$ cm⁻¹: 3620 (OH), 1770 (7-lactone), 1730 (C=CCO₂R), MS m/e (rel. int.): 362.173 (C₂₀H₂₆O₆, 0.5), 262 (M - RCO₂H, 1), 244 (262 - H₂O, 3), 83 (C₄H₇CO⁻, 100), 55 (83 - CO, 52).

$$[\alpha]_{24}^2 = \frac{589}{+10.3} \cdot \frac{578}{+10.6} \cdot \frac{546}{+12.9} \cdot \frac{436 \text{ nm}}{+24.6} (c = 0.3).$$

Acetylation (Ac $_2$ O, 4-pyrrolidinopyridine, room temp.) afforded 4.

8β-Angeloyloxy-14-acetoxytithifolin (4). Colourless crystals, mp 192–196 (Et₂O). IR $v_{max}^{CCK_a}$ cm⁻¹: 1770 (γ-lactone), 1740 (OAc), 1720, 1650 (C=CCO₂R), MS m/e (rel. int.): 404.184 (M⁺, 0.5) (C₂₂H₂₈O₃), 344 (M - HOAc, 0.5), 304 (M - AngOH, 0.5), 244 (304 - HOAc, 6), 83 (C₄H₃CO⁻, 100), 55 (83 - CO, 98).

$$[\alpha]_{24}^{2} = \frac{589}{+29.1} \frac{578}{+30.0} \frac{546}{+35.6} \frac{436 \text{ nm}}{+70.0} (c = 0.3).$$

8 β -[2,3-Epoxy-2-methylbutyryloxy]-14-acetoxytithifolin (5). Colourless crystals, mp 197- 202 (Et₂O), IR $v_{max}^{CCl_1}$ cm $^{-1}$: 1780 (γ -lactone), 1745 (OAc, CO₂R). MS m/e (rel. int.): 420.178 (M $^+$. 1) (C₂₂H₂₈O₈), 320 (M $^-$ RCO₂H, 2), 57 (100).

 2α -Hydroxyeupatolide 8-O-angelate (6). Colourless gum, IR $v_{\rm max}^{\rm CC1}$ cm $^{-1}$: 3610 (OH), 1780 (γ -lactone), 1725 (C=CCO $_2$ R), MS m/e (rel. int.): 346.178 (M $^+$, 0.5) (C $_{20}$ H $_{26}$ O $_5$), 246 (M $^-$ RCO $_2$ H, 10), 228 (246 $^-$ H $_2$ O, 5), 83 (C $_4$ H $_7$ CO $^+$, 100), 55 (83 $^-$ CO, 57). C1: 347 (M $_1$ +1, 11), 247 (M $_2$ +1 $^-$ RCO $_2$ H, 100), 229 (247 $^-$ H $_2$ O, 82).

$$[\alpha]_{24}^{2} = \frac{589}{+133.3} \frac{578}{+140.0} \frac{546}{+160.8} \frac{436 \text{ nm}}{+299.2} (c = 0.12).$$

 2α -Hydroxy-14-acetoxyeupatolide 8-O-angelate (7). Colourless gum, IR $v_{max}^{\rm CC1_4}$ cm $^{-1}$: 3600 (OH), 1780 (7-lactone), 1740 (OAc), 1720 (C=CCO₂R), MS m/e (rel. int.): 362.163 (C₂₀H₂₀O₆, M - ketenc, 3), 344 (M - HOAc, 2), 304 (M - AngOH, 1), 244 (304 - HOAc), 226 (244 - H₂O), 83 (C₄H₇CO $^+$, 100), 55 (83 - CO, 67), CI: (M + 1, 68), 305 (M + 1 - AngOH, 32), 245 (305 - HOAc, 100).

$$[\alpha]_{24}^{2} = \frac{589}{+65.4} \frac{578}{+67.7} \frac{546}{+78.0} \frac{436 \text{ nm}}{+144.9}$$
 (c = 0.3).

8β-Angeloyloxybalchanin (**9**). Colourless gum, IR $v_{\text{max}}^{\text{CCL}_4}$ cm⁻¹: 3640 (OH), 1790 (γ-lactone), 1730 (C=CCO₂R), MS $m_{e}e$ (rel. int.): 346.178 (M⁺, 4) ($C_{20}\text{H}_{26}\text{O}_{5}$), 246 (M - RCO₂H, 21), 228 (246 - H₂O, 9), 83 ($C_4\text{H}_7\text{CO}^+$, 100), 55 (83 - CO, 67).

$$[\alpha]_{24}^{2} = \frac{589}{+58.0} \frac{578}{+62.0} \frac{546}{+68.0} \frac{436 \text{ nm}}{+126.0} (c = 0.05).$$

1 mg **9** were heated for 4 hr at 70 with 0.1 ml Ac₂O. TLC (Et₂O-petrol, 1:1) afforded 1 mg **11**. colourless gum, IR $v_{\rm max}^{\rm CCl_a}$ cm⁻¹: 1790 (γ -lactone), 1750 (OAc), 1720 (C=CCO₂R), MS $m_{\rm max}^{\rm CCl_a}$ (rel. int.): 320 (M – HOAc, 30), 228 (328 – AngOH, 14), 83 (C_4 H₂CO⁺, 100).

8β-[2,3-Epoxy-2-methylbutyryloxy]-balchanin (10). Colourless gum, 1R $\nu_{\rm max}^{\rm CCL}$ cm $^{-1}$: 3620 (OH), 1780 (γ-lactone). MS me (rel. int.): 362.173 (M $^+$, 5) ($C_{20}H_{26}O_6$), 55 (100).

8β-Angeloyloxy-1β-hydroxyarbusculin B (12). Colourless gum, IR $v_{\text{max}}^{\text{CCO}}$ cm $^{-1}$: 3620 (OH), 1780 (γ-lactone), 1720 (C=CCO₂R), MS m/e (rel. int.): 346.178 (M $^{+}$. 2) (C₂₀H₂₆O₅), 246 (M - RCO₂H, 58), 228 (246 - H₂O, 12), 83 (C₄H-CO $^{-}$. 74), 55 (83 - CO, 100).

8 β - [2,3-Epoxy-2-methylbutyryloxyl-1 β -hydroxyarbuseulin B (13). Colourless gum. IR $y_{max}^{\rm CCL}$ cm $^{-1}$: 3620 (OH). 1780 (γ -lactone), MS m/e (rel. int.): 362.173 (M $^{-}$, 7) ($C_{20}H_{26}O_6$). 246 (M - RCO $_3$ H. 100), 228 (246 - H $_2$ O. 30).

Acknowledgements - We thank Drs. Scott A. Mori and P. Alvim, Centro de Pesquisas do Cacau at Itabanu, Bahia, Brazil, for their help during plant collection and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- Baruah, N. L., Sharma, A. P., Madhusudanan, K. P., Thyagarajan, K. P., Herz, W. and Maruari, R. (1979) J. Org. Chem. 44, 1831.
- Ciccio, J. F., Castro, V. H. and Calzado, J. G. (1979) Rev. Latinoam. Quim. 10, 134.
- 3. Herz, W. and Sharma, R. (1975) J. Org. Chem. 40, 3118.
- Pal, R., Kulshreshta, D. K. and Rastogi, R. P. (1977) *Indian J. Chem.* 15B, 208.
- Pal, R., Kulshreshta, D. K. and Rastogi, R. P. (1976) *Indian J. Chem.* 12B, 259.
- Ortega, A., Guerrero, C., Romo de Vivar, A., Romo, J. and Palafox, A. (1971) Rev. Latinoam. Quim. 2, 38.
- 7. Herz. W. and Blout, J. F. (1978) J. Org. Chem. 43, 1268.
- 8. Bohlmann, F., Burkhardt, R. and Zdero, C. (1973) *Naturally Occurring Acetylenes*. Academic Press. London.
- Hoeneisen, M., Silva, M. and Bohlmann, F. (1981) Rev. Latinoam. Quim. (in press).
- Martinez, R. J., Ayamante, I. S. B., Numez-Alarcon, J. A. and Romo de Vívar, A. (1979) *Phytochemistry* 18, 1527.
- Kupchan, S. M., Muruyama, M., Hemingway, R. J., Hemingway, J. C., Shibuya, S. and Fujita, T. (1973) J. Org. Chem. 38, 2189.
- 12. Herz, W. and De Groote, R. (1977) Phytochemistry 16, 1307.
- 13. Ohno, N. and Mabry, T. J. (1979) Phytochemistry 18, 1003.
- Quijano, L., Bloomenstiel, D. and Fischer, N. H. (1979) *Phytochemistry* 18, 1529.